iro3d - metal 3D printer


3D Printing process: Selective Powder Deposition (SPD)

Build volume of Model C: about 279x274x110 mm

Build volume of Model G: about 610x610x310 mm

Pourer diameter: 0.9 mm and 1.9 mm

Layer height: 0.1 to 1 mm (user configurable in GUI)

Min width of a detail: one pourer diameter

Min height of a detail: one layer height

Model C cost: $7,000 + shipping

Model G cost: $35,000 + shipping


We are looking for universities, or individual metallurgists, chemists, material scientists and physicists to collaborate on research of new materials that we can 3D print: metals, ceramics, glasses, and Metal-Matrix-Composites (MMCs). If interested, please send an email to


The printer itself is material agnostic, and can pour any powder that flows though a small hole. SPD can work with any metal combinations where the infill metal has lower melting temperature than the powder and the final alloy. Though, different metals require different baking temperatures and atmospheres.

Hydrogen-argon atmosphere would work with pretty much any metal. But such furnaces are very rare and thus expensive.

On the other hand, carbon oxide atmosphere is very easy to produce (by placing coke into the crucible), and according to the Ellingham Diagram it works well for non-reactive metals, such as iron, copper, nickel, tin, lead, bismuth, molybdenum, cobalt, tungsten, palladium, cadmium, silver, gold, platinum. But carbon oxide has a problem - over the time, it deposits soot onto the powder, which interferes with the infill process.

Another alternative is to use a soldering flux. But soldering fluxes work only with low melting temperature metals, such as tin, lead, and bismuth. But brazing fluxes might work with higher temperatures. We need to research them.

We have also looked into infilling ceramics powders with aluminum and other metals, and found many good artiles. But to try them we would need a furnace with a controlled atmosphere: hydrogen, argon, nitrogen, or vacuum.

And sepaking of controlled atmosphere furnaces again - it's not that difficult to make one. And much cheaper than buying it. But it's a separate project. Anyone wants to collaborate?
There is no shrinkage because the metal powder is not sintered, but infused with infill metal. There is a very small distortion due to uneven thermal expansion of different powders. But overall, the size and shape are well preserved.
SPD itself doesn't reduce the strength in any way. The microstructure of the printed parts is similar to cast ones. The strength of the printed object is determined by the metal composition, cooling rate, and the atmosphere. Note that carbon oxide atmosphere deposits soot onto the powder, which interferes with the infill process, and increases carbon content in the print. So, for the best results, a hydrogen-argon atmosphere is needed.
Print time very much depends on the size and complexity of the object. Rough average would be about 24 hours.
Yes. After the printer fills the crucible with the powders - you need to add the infill metal, and bake it in a kiln or furnace.
The baking temperature must be above the melting temperature of the infill metal, but below the melting temperature the build powder and the final alloy.
The hold time should be sufficient for the heat to get to the middle of the crucible and melt the infill metal. The minimum hold time depends on the size and thermal conductivity of the crucible, the mass, and the difference between the melting temperature of the infill metal and the temperature in the kiln. Usually 2 or 3 hours is sufficient.
For copper infill metal, your kiln should be able to go above the copper melting temperature, which is 1084°C, so most pottery kilns would work. A kiln with programmable digital controller is preferred, because it can be programmed to warm up slowly, to avoid cracking the crucible. A new pottery kiln might cost you about $1000. A used one you might find for a few hundred dollars on Craig's List, if you look for a while. Hydrogen furnace is more expensive, but it would provide much better results and would work for a larger variety of metals.
You can buy the consumables from 3rd parties. In general, for the powder to flow good, the hole size should be at least 5-10 times larger than the particle size. So, for example, 200 microns powder would flow well thru 2 mm or larger hole. And 40 microns powder would flow well thru 0.5 mm or larger hole. Powders smaller than 40 microns are not recommended, because they tend to cake, and also they get airborne easier, which would present a health hazard. So, the ideal particle size is 100 microns for the 0.9 mm hole, and 200 microns for the 1.9 mm hole. The powders and the infill metal shouldn't have too many impurities. For example, reactive metals, especially in the powder, might oxidize and prevent infilling. Crucibles for baking with coke should be non-porous and have a tight lid. Crucibles for baking with hydrogen-argon atmosphere can be porous and don't need any lid. Most of the things you can buy from
Infill metals you can buy from MetalShipper and RotoMetals.
Stainless steel crucibles, sand, and iron powder from
There are many:
The rocket engines.
Molds and mold cores for plastic injection molding with conformal cooling channels.
Large ship propellers in nickel aluminum bronze.